Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A major debate in ecology concerns the relative importance of intrinsic factors and extrinsic environmental variations in determining population size fluctuations1-6. Spatial correlation of fluctuations in different populations caused by synchronous environmental shocks2,7,8is a powerful tool for quantifying the impact of environmental variations on population dynamics8,9. However, interpretation of synchrony is often complicated by migration between populations8,10. Here we address this issue by using time series from sheep populations on two island in the St Kilda archipelago11-13. Fluctuations in the sizes of the two populations are remarkably synchronized over a 40-year period. A nonlinear time-series model shows that a high and frequent degree of environmental correlation is required to achieve this level of synchrony. The model indicates that if there were less environmental correlation, population dynamics would be much less synchronous than is observed. This is because of a threshold effect that is dependent on population size; the threshold magnifies random differences between populations. A refined model shows that part of the required environmental synchronicity can be accounted for by large-scale weather variations. These results underline the importance of understanding the interaction between intrinsic and extrinsic influences on population dynamics14.

Original publication

DOI

10.1038/29291

Type

Journal article

Journal

Nature

Publication Date

13/08/1998

Volume

394

Pages

674 - 677