Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas resistance carry point mutations in protospacers, though not all protospacer mutations lead to escape. Here, we show that in the case of Escherichia coli subtype CRISPR/Cas system, the requirements for crRNA matching are strict only for a seven-nucleotide seed region of a protospacer immediately following the essential protospacer-adjacent motif. Mutations in the seed region abolish CRISPR/Cas mediated immunity by reducing the binding affinity of the crRNA-guided Cascade complex to protospacer DNA. We propose that the crRNA seed sequence plays a role in the initial scanning of invader DNA for a match, before base pairing of the full-length spacer occurs, which may enhance the protospacer locating efficiency of the E. coli Cascade complex. In agreement with this proposal, single or multiple mutations within the protospacer but outside the seed region do not lead to escape. The relaxed specificity of the CRISPR/Cas system limits escape possibilities and allows a single crRNA to effectively target numerous related viruses.

Original publication

DOI

10.1073/pnas.1104144108

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

21/06/2011

Volume

108

Pages

10098 - 10103

Keywords

Base Sequence, DNA, Viral, Escherichia coli, Escherichia coli Proteins, Inverted Repeat Sequences, Macromolecular Substances, Models, Molecular, Molecular Sequence Data, Mutation, RNA, Viruses