Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

"Real-time" functional magnetic resonance imaging is starting to be used in neurofeedback applications, enabling individuals to regulate their brain activity for therapeutic purposes. These applications use two-dimensional multislice echo planar or spiral readouts to image the entire brain volume, often with a much smaller region of interest within the brain monitored for feedback purposes. Given that such brain activity should be sampled rapidly, it is worthwhile considering alternative functional magnetic resonance imaging pulse sequences that trade spatial resolution for temporal resolution. We developed a prototype sequence localizing a column of magnetization by outer volume saturation, from which densely sampled transverse relaxation time decays are obtained at coarse voxel locations using an asymmetric gradient echo train. For 5×20×20 mm3 voxels, 256 echoes are sampled at ∼1 msec and then combined in weighted summation to increase functional magnetic resonance imaging signal contrast. This multiecho coarse voxel pulse sequence is shown experimentally at 1.5 T to provide the same signal contrast to noise ratio as obtained by spiral imaging for a primary motor cortex region of interest, but with potential for enhanced temporal resolution. A neurofeedback experiment also illustrates measurement and calculation of functional magnetic resonance imaging signals within 1 sec, emphasizing the future potential of the approach.

Original publication

DOI

10.1002/mrm.22674

Type

Journal article

Journal

Magn Reson Med

Publication Date

03/2011

Volume

65

Pages

715 - 724

Keywords

Algorithms, Biofeedback, Psychology, Evoked Potentials, Feedback, Sensory, Female, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Motor Cortex, Reproducibility of Results, Sensitivity and Specificity, Somatosensory Cortex, Young Adult