Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microglial activation is implicated in the pathogenesis of ALS and can be detected in animal models of the disease that demonstrate increased survival when treated with anti-inflammatory drugs. PK11195 is a ligand for the "peripheral benzodiazepine binding site" expressed by activated microglia. Ten ALS patients and 14 healthy controls underwent [(11)C](R)-PK11195 PET of the brain. Volumes of interest were defined to obtain [(11)C](R)-PK11195 regional binding potential values for motor and "extra-motor" regions. Significantly increased binding was found in motor cortex (P = 0.003), pons (P = 0.004), dorsolateral prefrontal cortex (P = 0.010) and thalamus (P = 0.005) in the ALS patients, with significant correlation between binding in the motor cortex and the burden of upper motor neuron signs clinically (r = 0.73, P = 0.009). These findings indicate that cerebral microglial activation can be detected in vivo during the evolution of ALS, and support the previous observations that cerebral pathology is widespread. They also argue for the development of therapeutic strategies aimed at inflammatory pathways.

Original publication

DOI

10.1016/j.nbd.2003.12.012

Type

Journal article

Journal

Neurobiol Dis

Publication Date

04/2004

Volume

15

Pages

601 - 609

Keywords

Adult, Amyotrophic Lateral Sclerosis, Brain, Female, Humans, Isoquinolines, Male, Microglia, Middle Aged, Tomography, Emission-Computed