Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Electroretinography (ERG) is an established diagnostic technique in clinical ophthalmology and provides objective information about retinal function. This technique is also applied in basic research, where animal models of hereditary retinopathies have significantly contributed to our understanding of the composition of ERG responses in general and how retinal degenerative pathologies alter retinal function specifically. Indeed, electrophysiologic assessment of transgenic mice, which are genetically engineered to mimic human mutations that lead to retinal diseases, can be well compared with clinical data. Furthermore, limitations on examinations (e.g. length of measurement, range of light intensity) are much less of a concern when assessing mice compared to human patients. In order to measure and analyze retinal responses properly, several important aspects have to be considered. This paper focuses on these aspects, and shows exemplary ERG data which were obtained from normal wild-type mice and from transgenic mice with specific functional properties, namely Rho-/- (rod opsin knockout, cone function only), and Cnga3-/- (cone CNG channel deficient, rod function only) to illustrate rod and cone system contributions to ERG responses.

Type

Journal article

Journal

Front Biosci (Landmark Ed)

Publication Date

01/01/2009

Volume

14

Pages

2730 - 2737

Keywords

Animals, Electroretinography, Flicker Fusion, Mice, Mice, Inbred C57BL, Vision Tests