Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C₃ enzyme. Specific amino-acids in Rubisco are associated with C₄ photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots. METHODOLOGY/PRINCIPAL FINDINGS: We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C₄ plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C₄ Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C₄ plant groups, such as C₄ monocots, illustrating a striking parallelism in molecular evolution. CONCLUSIONS/SIGNIFICANCE: Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco.

Original publication

DOI

10.1371/journal.pone.0052974

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

Amaranthaceae, Base Sequence, Evolution, Molecular, Genes, Plant, Molecular Sequence Data, Photosynthesis, Phylogeny, Ribulose-Bisphosphate Carboxylase, Ribulosephosphates, Selection, Genetic