Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Fusion peptides of type I fusion glycoproteins are structural elements of several enveloped viruses which enable the fusion between host and virus membranes. It is generally suggested that these peptides can promote the early fusion steps by inducing membrane curvature and that they adopt a tilted helical conformation in membranes. Although this property has been the subject of several experimental and in silico studies, an extensive sampling of the membrane peptide interaction has not yet been done. In this study, we performed coarse-grained molecular dynamic simulations in which the lipid bilayer self-assembles around the peptide. The simulations indicate that the SIV fusion peptide can adopt two different orientations in a DPPC bilayer, a major population which adopts a tilted interfacial orientation and a minor population which is perpendicular to the bilayer. The simulations also indicate that for the SIV mutant that does not induce fusion in vitro the tilt is abolished.

Original publication

DOI

10.1021/jp3027385

Type

Journal article

Journal

J Phys Chem B

Publication Date

26/11/2012

Volume

116

Pages

13713 - 13721

Keywords

Lipid Bilayers, Models, Biological, Molecular Dynamics Simulation, Peptides, Simian Immunodeficiency Virus, Viral Fusion Proteins