Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The phytohormone gibberellin (GA) regulates the development and fertility of Arabidopsis flowers. The mature flowers of GA-deficient mutant plants typically exhibit reduced elongation growth of petals and stamens. In addition, GA-deficiency blocks anther development, resulting in male sterility. Previous analyses have shown that GA promotes the elongation of plant organs by opposing the function of the DELLA proteins, a family of nuclear growth repressors. However, it was not clear that the DELLA proteins are involved in the GA-regulation of stamen and anther development. We show that GA regulates cell elongation rather than cell division during Arabidopsis stamen filament elongation. In addition, GA regulates the cellular developmental pathway of anthers leading from microspore to mature pollen grain. Genetic analysis shows that the Arabidopsis DELLA proteins RGA and RGL2 jointly repress petal, stamen and anther development in GA-deficient plants, and that this function is enhanced by RGL1 activity. GA thus promotes Arabidopsis petal, stamen and anther development by opposing the function of the DELLA proteins RGA, RGL1 and RGL2.

Original publication




Journal article



Publication Date





1055 - 1064


Arabidopsis, Arabidopsis Proteins, Flowers, Genes, Plant, Gibberellins, Microscopy, Electron, Scanning, Mitosis, Mutation, Phenotype, Plant Growth Regulators, Plant Proteins, Pollen, Transcription Factors, ral Guanine Nucleotide Exchange Factor