Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two-pore channels (TPCs) constitute a family of endolysosomal cation channels with functions in Ca²⁺ signaling. We used a mutational analysis to investigate the role of channel domains for the trafficking of the Arabidopsis TPC1 to the tonoplast, a process that is generally not well understood in plants. The results show that the soluble C-terminus was not essential for targeting but for channel function, while further C-terminal truncations of two or more transmembrane domains impaired protein trafficking. An N-terminal dileucine motif (EDPLI) proved to be critical for vacuolar targeting of TPC1, which was independent of the adaptor protein AP-3. Deletion or mutation of this sorting motif, which is conserved among TPCs caused redirection of the protein transport to the plasma membrane. An N-terminal region with a predicted α-helical structure was shown to support efficient vacuolar trafficking and was essential for TPC1 function. Similar to their localization in mammalian endosomes and lysosomes, MmTPC1 and MmTPC2 were targeted to small organelles and the membrane of the lytic vacuole, respectively, when expressed in plant cells. These results shed new light on the largely uncharacterized sorting signals of plant tonoplast proteins and reveal similarities between the targeting machinery of plants and mammals.

Original publication

DOI

10.1111/j.1600-0854.2012.01366.x

Type

Journal article

Journal

Traffic

Publication Date

07/2012

Volume

13

Pages

1012 - 1022

Keywords

Adaptor Protein Complex 3, Arabidopsis, Arabidopsis Proteins, Calcium Channels, Calcium Signaling, Cell Line, Microscopy, Fluorescence, Patch-Clamp Techniques, Protein Sorting Signals, Protein Transport