Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Photosynthetic development in any plant requires the intracellular co-ordination of chloroplast and nuclear gene expression programs. In this report, we investigate the role of a nuclear gene in photosynthetic development by examining C4 photosynthetic differentiation in a yellow mutant of maize (Zea mays L.). The plastids undifferentiated (pun) mutation disrupts plastid biogenesis in both bundle sheath and mesophyll cells, at an early developmental stage and in a light-independent manner. Chloroplast thylakoids are disrupted in the mutant and both membrane-associated and soluble chloroplast-encoded proteins accumulate at much reduced levels. The observed plastid morphology is consistent with a general defect in chloroplast biogenesis that is most likely exerted at the post-translational level. Despite aberrant chloroplast development, nuclear photosynthetic genes are expressed normally in pun mutants. Thus, neither functional chloroplasts nor the Pun gene product are required to establish nuclear photosynthetic gene expression patterns in maize.


Journal article



Publication Date





647 - 658


Cell Nucleus, DNA Transposable Elements, Darkness, Gene Expression Regulation, Plant, Light, Microscopy, Electron, Mutation, Phenotype, Photosynthesis, Photosynthetic Reaction Center Complex Proteins, Pigments, Biological, Plant Leaves, Plastids, Thylakoids, Zea mays