Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Classical niche theory explains the coexistence of species through their exploitation of different resources. Assemblages of herbivores coexisting on a particular plant species are thus expected to be dominated by species from host-specific guilds with narrow, coexistence-facilitating niches rather than by species from generalist guilds. Exactly the opposite pattern is observed for folivores feeding on trees in New Guinea. The least specialized mobile chewers were the most species rich, followed by the moderately specialized semiconcealed and exposed chewers. The highly specialized miners and mesophyll suckers were the least species-rich guilds. The Poisson distribution of herbivore species richness among plant species in specialized guilds and the absence of a negative correlation between species richness in different guilds on the same plant species suggest that these guilds are not saturated with species. We show that herbivore assemblages are enriched with generalists because these are more completely sampled from regional species pools. Herbivore diversity increases as a power function of plant diversity, and the rate of increase is inversely related to host specificity. The relative species diversity among guilds is thus scale dependent, as the importance of specialized guilds increases with plant diversity. Specialized insect guilds may therefore comprise a larger component of overall diversity in the tropics (where they are also poorly known taxonomically) than in the temperate zone, which has lower plant diversity.

Original publication

DOI

10.1086/664082

Type

Journal article

Journal

Am Nat

Publication Date

03/2012

Volume

179

Pages

351 - 362

Keywords

Adaptation, Biological, Animals, Biodiversity, Food Chain, Host-Parasite Interactions, Insecta, Models, Biological, New Guinea, Species Specificity, Trees