Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: How the central nervous system (CNS) develops to implement innate behaviors remains largely unknown. Drosophila male sexual behavior has long been used as a model to address this question. The male-specific products of fruitless (fru) are pivotal to the emergence of this behavior. These putative transcription factors, containing one of three alternative DNA binding domains, determine the neuronal substrates for sexual behavior in male CNS. RESULTS: We isolated the first fru coding mutation, resulting in complete loss of one isoform. At the neuronal level, this isoform alone controls differentiation of a male-specific muscle and its associated motorneuron. Conversely, a combination of isoforms is required for development of serotonergic neurons implicated in male copulatory behavior. Full development of these neurons requires the male-specific product of doublesex, a gene previously thought to act independently of fru. At the behavioral level, missing one isoform leads to diminished courtship behavior and infertility. We achieved the first rescue of a distinct fru behavioral phenotype, expressing a wild-type isoform in a defined subset of its normal expression pattern. CONCLUSION: This study exemplifies how complex behaviors can be controlled by a single locus through multiple isoforms regulating both developmental and physiological pathways in different neuronal substrates.

Original publication

DOI

10.1016/j.cub.2006.04.039

Type

Journal article

Journal

Curr Biol

Publication Date

06/06/2006

Volume

16

Pages

1063 - 1076

Keywords

Alternative Splicing, Animals, Cell Differentiation, DNA-Binding Proteins, Drosophila Proteins, Drosophila melanogaster, Female, Fertility, Gene Expression Regulation, Developmental, Male, Mutation, Nerve Tissue Proteins, Neurons, Protein Isoforms, Sex Characteristics, Sexual Behavior, Animal, Transcription Factors