Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A series of visual enumeration tasks were conducted investigating the role of the dorsal visual stream in motion segmentation. Cortical areas representing the lower visual field have greater connections with the parietal cortex and should therefore show an advantage for processes driven by the dorsal stream (Previc, 1990). We looked for differences in processing displays in the upper versus lower visual field when targets required segmentation from distractors in an enumeration task. In a baseline condition, random configurations of moving and static items were presented briefly (200 ms) to the upper or lower visual field. Fast and efficient enumeration took place both for moving targets and for static targets presented alone; there was no effect of visual field. In contrast, for moving targets, a lower visual field advantage was found when the inclusion of static distractors demanded segmentation by motion. This disappeared at the smaller display sizes when the targets were presented in canonical patterns. The results are consistent with segmentation of moving targets from static distractors being mediated by dorsal regions of the visual cortex, particularly under conditions of high load (non-canonical patterns). These regions show greater sensitivity to the lower visual field and to magnocellular-based input.

Original publication

DOI

10.1163/1568568054389570

Type

Journal article

Journal

Spat Vis

Publication Date

2005

Volume

18

Pages

447 - 460

Keywords

Attention, Humans, Motion Perception, Pattern Recognition, Visual, Photic Stimulation, Visual Cortex, Visual Fields