Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transcriptional interference between genes and the regulatory elements of simple eukaryotes such as Saccharomyces cerevisiae is an unavoidable consequence of their compressed genetic arrangement. We have shown previously that with the tandem arranged genes GAL10 and GAL7, inefficient transcriptional termination of the upstream gene inhibits initiation of transcription on the downstream gene. We now show that transcriptional interference can occur also with S. cerevisiae RNA polymerase II genes arranged convergently. We demonstrate that when the GAL10 and GAL7 genes are rearranged in a convergent orientation, transcriptional initiation occurs at full levels. However, as soon as the two transcripts begin to overlap, elongation is restricted, resulting in a severe reduction in steady-state mRNA accumulation. This effect is observed only in cis arrangement, arguing against RNA-interference effects acting on the potential generation of antisense transcripts. These data reinforce the necessity of separating adjacent RNA polymerase II transcription units by efficient termination signals.

Original publication




Journal article


Proc Natl Acad Sci U S A

Publication Date





8796 - 8801


Base Sequence, Blotting, Northern, DNA Primers, Genes, Fungal, Saccharomyces cerevisiae, Transcription, Genetic