Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spider silks combine basic amino acids into strong and versatile fibers where the quality of the elastomer is attributed to the interaction of highly adapted protein motifs with a complex spinning process. The evaluation, however, of the interaction has remained elusive. Here, we present a novel analysis to study silk formation by examining the secondary structures of silk proteins in solution. Using the seven different silks of Nephila edulis as a benchmark system, we define a structural disorder parameter (the folding index, gamma). We found that gamma is highly correlated with the ratio of glycine present. Testing the correlation between glycine content and the folding index (gamma) against a selected range of silks, we find quantitatively that, in order to achieve specialization with changes in mechanical performance, the spider's silks require higher structural flexibility at the expense of reduced stability and consequently an increased conversion-energy cost. Taken together, our biophysical and evolutionary findings reveal that silk elastomericity evolved in tandem with specializations in the process of silk spinning.

Original publication

DOI

10.1021/bm701069y

Type

Journal article

Journal

Biomacromolecules

Publication Date

01/2008

Volume

9

Pages

216 - 221

Keywords

Circular Dichroism, Elasticity, Insect Proteins, Protein Conformation, Silk, Temperature