Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have engineered influenza A/WSN/33 viruses which have viral RNA (vRNA) segments with altered base pairs in the conserved double-stranded region of their vRNA promoters. The mutations were introduced into the segment coding for the neuraminidase (NA) by using a reverse genetics system. Two of the rescued viruses which share a C-G-->A-U double mutation at positions 11 and 12' at the 3' and 5' ends of the NA-specific vRNA, respectively, showed approximately a 10-fold reduction of NA levels. The mutations did not dramatically affect the NA-specific vRNA levels found in virions or the NA-specific vRNA and cRNA levels in infected cells. In contrast, there was a significant decrease in the steady-state levels of NA-specific mRNAs in infected cells. Transcription studies in vitro with ribonucleoprotein complexes isolated from the two transfectant viruses indicated that transcription initiation of the NA-specific segment was not affected. However, the majority of NA-specific transcripts lacked poly(A) tails, suggesting that mutations in the double-stranded region of the influenza virus vRNA promoter can attenuate polyadenylation of mRNA molecules. This is the first time that a promoter mutation in an engineered influenza virus has shown a differential effect on influenza virus RNA transcription and replication.

Type

Journal article

Journal

J Virol

Publication Date

08/1998

Volume

72

Pages

6283 - 6290

Keywords

Animals, Cattle, Cell Line, Humans, Influenza A virus, Mutagenesis, Neuraminidase, Poly A, Promoter Regions, Genetic, RNA, Complementary, RNA, Messenger, RNA, Viral, Ribonucleoproteins, Transcription, Genetic, Transfection