Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The absence of expression of class I products of the major histocompatibility complex at early stages of development is thought to play a key role in maternal tolerance of the fetal allograft. To test this, we developed a strategy that would allow us to describe the consequences of overexpression of the H-2Dd transplantation antigen in the developing embryo. A construct containing the H-2Dd gene under control of the human beta-actin promoter was transfected into pluripotent embryonic stem (ES) cells. Particularly in this case, since overexpression of major histocompatibility complex class I gene products may profoundly affect embryonic development, an important advantage of the ES cell system is the ability to analyze gene expression and study effects on cell growth and differentiation in vitro. ES cells do not constitutively express beta 2-microglobulin. Consistent with this, H-2Dd H chains expressed by ES cell transformants were not associated with beta 2-microglobulin or transported to the cell surface. Significant levels of beta 2-microglobulin and H-2Dd membrane glycoproteins were expressed following differentiation in vitro. H-2Dd-transfected ES cells gave rise to a wide range of differentiated cell types, and there was no evidence to suggest that expression of the introduced H-2Dd gene affects the differentiation abilities of ES cells in vitro. When introduced into blastocysts, H-2Dd-transfected ES cells extensively contribute to embryonic and extraembryonic tissues, but this results in the failure of chimeric conceptuses at midgestation. Considering that transgenic chimeras cannot be rescued by transfer into syngeneic foster females, it seems likely that nonimmunological mechanisms are responsible for these prenatal lethalities.


Journal article


Proc Natl Acad Sci U S A

Publication Date





5927 - 5931


Animals, Cells, Cultured, Chimera, Gene Expression, Genes, Lethal, H-2 Antigens, In Vitro Techniques, Mice, Mice, Transgenic, RNA, Messenger, Stem Cells, Transfection