Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nuclear lamina forms a protein mesh that underlies the nuclear membrane. In most mammalian cells it contains the intermediate filament proteins, lamins A, B and C. As their name indicates, lamins are generally thought to be confined to the nuclear periphery. We now show that they also form part of a diffuse skeleton that ramifies throughout the interior of the nucleus. Unlike their peripheral counterparts, these internal lamins are buried in dense chromatin and so are inaccessible to antibodies, but accessibility can be increased by removing chromatin. Knobs and nodes on an internal skeleton can then be immunolabelled using fluorescein- or gold-conjugated anti-lamin A antibodies. These results suggest that the lamins are misnamed as they are also found internally.

Type

Journal article

Journal

J Cell Sci

Publication Date

02/1995

Volume

108 ( Pt 2)

Pages

635 - 644

Keywords

Antibodies, Monoclonal, Chromatin, Fluorescent Antibody Technique, HeLa Cells, Humans, Lamins, Microscopy, Immunoelectron, Nuclear Matrix, Nuclear Proteins