Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Ca2+-dependent retrograde inhibition of inhibitory postsynaptic currents (depolarization-induced-suppression of inhibition; DSI) was investigated using fura-2 Ca2+ measurements and whole-cell patch-clamp recordings in rat cerebellar Purkinje cells. DSI was studied in cells loaded with different concentrations of the Ca2+ chelators BAPTA and EGTA. A concentration of 40 mM BAPTA was required to significantly interfere with DSI, whereas 10 mM BAPTA was almost ineffective. 40 mM EGTA reduced DSI, but was less effective than 40 mM BAPTA. Ratiometric Ca2+ measurements indicated that the extent of DSI depended critically on the changes in intracellular calcium ([Ca2+]i). The relationship between DSI and peak Delta[Ca2+]i could be approximated by a hyperbolic function, with apparent half-saturation concentrations of 200 and 40 nM for dendritic and somatic [Ca2+]i, respectively. It is suggested that DSI is due to somatodendritic exocytosis of a retrograde messenger, and that this exocytosis is highly sensitive to [Ca2+]i.

Type

Journal article

Journal

Eur J Neurosci

Publication Date

03/2000

Volume

12

Pages

987 - 993

Keywords

Animals, Calcium, Calcium Signaling, Cerebellum, Chelating Agents, Dendrites, Electrophysiology, Excitatory Postsynaptic Potentials, Fluorescent Dyes, Fura-2, In Vitro Techniques, Patch-Clamp Techniques, Purkinje Cells, Rats