Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Superstitious behaviours, which arise through the incorrect assignment of cause and effect, receive considerable attention in psychology and popular culture. Perhaps owing to their seeming irrationality, however, they receive little attention in evolutionary biology. Here we develop a simple model to define the condition under which natural selection will favour assigning causality between two events. This leads to an intuitive inequality--akin to an amalgam of Hamilton's rule and Pascal's wager--that shows that natural selection can favour strategies that lead to frequent errors in assessment as long as the occasional correct response carries a large fitness benefit. It follows that incorrect responses are the most common when the probability that two events are really associated is low to moderate: very strong associations are rarely incorrect, while natural selection will rarely favour making very weak associations. Extending the model to include multiple events identifies conditions under which natural selection can favour associating events that are never causally related. Specifically, limitations on assigning causal probabilities to pairs of events can favour strategies that lump non-causal associations with causal ones. We conclude that behaviours which are, or appear, superstitious are an inevitable feature of adaptive behaviour in all organisms, including ourselves.

Original publication

DOI

10.1098/rspb.2008.0981

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/01/2009

Volume

276

Pages

31 - 37

Keywords

Animals, Biological Evolution, Humans, Models, Theoretical, Selection, Genetic, Superstitions