Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SMAD4 is a central component of the TGFbeta superfamily signaling pathway. Within the ovary, TGFbeta-related proteins play crucial roles in controlling granulosa cell growth, differentiation, and steroidogenesis. To study the in vivo roles of SMAD4 during follicle development, we generated an ovarian conditional knockout of Smad4 using the cre/loxP recombination system. Smad4 ovarian-specific knockout mice are subfertile with decreasing fertility over time and multiple defects in folliculogenesis. Regulation of steroidogenesis is disrupted in the Smad4 conditional knockout, leading to increased levels of serum progesterone. In addition, severe cumulus cell defects are present both in vivo and when assayed in vitro. These findings demonstrate that disrupting signaling through SMAD4 in the ovarian granulosa cells leads to premature luteinization of granulosa cells and eventually premature ovarian failure, thereby demonstrating key in vivo roles of TGFbeta superfamily signaling in the timing of granulosa cell differentiation.

Original publication

DOI

10.1210/me.2005-0462

Type

Journal article

Journal

Mol Endocrinol

Publication Date

06/2006

Volume

20

Pages

1406 - 1422

Keywords

Animals, Base Sequence, DNA Primers, Female, Granulosa Cells, Infertility, Female, Luteinization, Mice, Mice, Inbred C57BL, Mice, Knockout, Ovary, Ovulation, Pregnancy, Primary Ovarian Insufficiency, Signal Transduction, Smad4 Protein, Steroids