Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Coordination between the eyes and the hand is likely to be based on a process of motor learning, so that the interactions between the two systems can be accurately controlled. By using an unusual tracking task we measured the change in brain activation levels, as recorded with 3T functional magnetic resonance imaging (fMRI), between naïve human subjects and the same subjects after a period of extended training. Initially the performance of the two groups was similar. One subject group was then trained in a synchronous, coordinated, eye-hand task; the other group trained with a 304 ms temporal offset between hand and eye tracking movements. After training, different patterns of performance were observed for the groups, and different functional activation profiles. Significant change in the relationship between functional activation levels and eye-hand task conditions was predominantly restricted to visuo-motor areas of the lateral and vermal cerebellum. In an additional test with one of the subject groups, we show that there was increased cerebellar activation after learning, irrespective of change in performance error. These results suggest that two factors contribute to the measured blood oxygen level-dependent (BOLD) signal. One declined with training and may be directly related to performance error. The other increased after training, in the test conditions nearest to the training condition, and may therefore be related to acquisition of experience in the task. The loci of activity changes suggest that improved performance is because of selective modified processing of ocular and manual control signals within the cerebellum. These results support the suggestion that coordination between eye and hand movement is based on an internal model acquired by the cerebellum that provides predictive signals linking the control of the two effectors.

Original publication




Journal article


Exp Brain Res

Publication Date





170 - 183


Adult, Cerebellum, Eye Movements, Female, Hand, Humans, Magnetic Resonance Imaging, Male, Oxygen, Psychomotor Performance, Regression Analysis, Space Perception