Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Magnetic resonance spectroscopy (MRS) allows measurement of neurotransmitter concentrations within a region of interest in the brain. Inter-individual variation in MRS-measured GABA levels have been related to variation in task performance in a number of regions. However, it is not clear how MRS-assessed measures of GABA relate to cortical excitability or GABAergic synaptic activity. We therefore performed two studies investigating the relationship between neurotransmitter levels as assessed by MRS and transcranial magnetic stimulation (TMS) measures of cortical excitability and GABA synaptic activity in the primary motor cortex. We present uncorrected correlations, where thePvalue should therefore be considered with caution. We demonstrated a correlation between cortical excitability, as assessed by the slope of the TMS input-output curve and MRS-assessed glutamate levels (r= 0.803,P= 0.015) but no clear relationship between MRS-assessed GABA levels and TMS-assessed synaptic GABA A activity (2.5 ms inter-stimulus interval (ISI) short-interval intracortical inhibition (SICI); Experiment 1:r= 0.33,P= 0.31; Experiment 2:r=-0.23,P= 0.46) or GABA B activity (long-interval intracortical inhibition (LICI); Experiment 1:r=-0.47,P= 0.51; Experiment 2:r= 0.23,P= 0.47). We demonstrated a significant correlation between MRS-assessed GABA levels and an inhibitory TMS protocol (1 ms ISI SICI) with distinct physiological underpinnings from the 2.5 ms ISI SICI (r=-0.79,P= 0.018). Interpretation of this finding is challenging as the mechanisms of 1 ms ISI SICI are not well understood, but we speculate that our results support the possibility that 1 ms ISI SICI reflects a distinct GABAergic inhibitory process, possibly that of extrasynaptic GABA tone. © 2011 The Authors. Journal compilation © 2011 The Physiological Society.

Original publication

DOI

10.1113/jphysiol.2011.216978

Type

Journal article

Journal

Journal of Physiology

Publication Date

01/12/2011

Volume

589

Pages

5845 - 5855