Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The modelling of neuropsychiatric disease using the mouse has provided a wealth of information regarding the relationship between specific genetic lesions and behavioural endophenotypes. However, it is becoming increasingly apparent that synergy between genetic and nongenetic factors is a key feature of these disorders that must also be taken into account. With the inherent limitations of retrospective human studies, experiments in mice have begun to tackle this complex association, combining well-established behavioural paradigms and quantitative neuropathology with a range of environmental insults. The conclusions from this work have been varied, due in part to a lack of standardised methodology, although most have illustrated that phenotypes related to disorders such as schizophrenia are consistently modified. Far fewer studies, however, have attempted to generate a "two-hit" model, whereby the consequences of a pathogenic mutation are analysed in combination with environmental manipulation such as prenatal stress. This significant, yet relatively new, approach is beginning to produce valuable new models of neuropsychiatric disease. Focussing on prenatal and perinatal stress models of schizophrenia, this review discusses the current progress in this field, and highlights important issues regarding the interpretation and comparative analysis of such complex behavioural data.

Original publication




Journal article



Publication Date





1411 - 1420


Animals, Disease Models, Animal, Female, Gene-Environment Interaction, Mice, Mice, Inbred Strains, Pregnancy, Prenatal Exposure Delayed Effects, Prenatal Injuries, Schizophrenia, Stress, Physiological