Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neurovascular correlates of response preparation have been investigated in human neuroimaging studies. However, conventional neuroimaging cannot distinguish, within the same trial, between areas involved in response selection and/or response execution and areas specifically involved in response preparation. The specific contribution of parietal and frontal areas to motor preparation has been explored in electrophysiological studies in monkey. However, the associative nature of sensorimotor tasks calls for the additional contributions of other cortical regions. In this article, we have investigated the functional anatomy of movement representations in the context of an associative visuomotor task with instructed delays. Neural correlates of movement representations have been assessed by isolating preparatory activity that is independent from the performance of an actual motor act, or from the presence of a response's target. Movement instruction (specified by visual cues) and motor performance (specified by an auditory cue) were separated by a variable delay period. We have used whole-brain event-related fMRI to measure human brain activity during the performance of such a task. We have focused our analysis on specific preparatory activity, defined as a sustained response over variable delay periods between a transient visual instruction cue and a brief motor response, temporally independent from the transient events. Behavioral and electrophysiological controls ensured that preparatory activity was not contaminated by overt motor responses or working memory processes. We report suggestive evidence for multiple movement representations in the human brain. Specific sustained activity in preparation for an action was found not only in parieto-frontal regions but also in extrastriate areas and in the posterior portion of the superior temporal sulcus. We suggest that goal-directed preparatory activity relies on both visuomotor and visuoperceptual areas. These findings point to a functional-anatomical basis for the integration of perceptual and executive processes.

Original publication

DOI

10.1162/08989290260138663

Type

Journal article

Journal

J Cogn Neurosci

Publication Date

01/07/2002

Volume

14

Pages

769 - 784

Keywords

Adult, Brain Mapping, Cerebrovascular Circulation, Evoked Potentials, Visual, Fingers, Humans, Magnetic Resonance Imaging, Male, Motor Cortex, Movement, Parietal Lobe, Prefrontal Cortex, Psychomotor Performance, Temporal Lobe, Visual Cortex