Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

E-selectin is an endothelial adhesion molecule, which mediates the tethering and rolling of leukocytes on vascular endothelium. It recognizes the glycoprotein E-selectin ligand-1 (ESL-1) as a major binding partner on mouse myeloid cells. Using surface plasmon resonance, we measured the kinetics and affinity of binding of monomeric E-selectin to ESL-1 isolated from mouse bone marrow cells. E-selectin bound to ESL-1 with a fast dissociation rate constant of 4.6 s(-1) and a calculated association rate constant of 7.4 x 10(4) m(-1) s(-1). We determined a dissociation constant (K(d)) of 62 microm, which resembles the affinity of L-selectin binding to glycosylation-dependent cell adhesion molecule-1. The affinity of the E-selectin-ESL-1 interaction did not change significantly when the temperature was varied from 5 degrees C to 37 degrees C, indicating that the enthalpic contribution to the binding is small at physiological temperatures, and that, in contrast to typical protein-carbohydrate interactions, binding is driven primarily by favorable entropic changes. Interestingly, surface plasmon resonance experiments with recombinant ESL-1 from alpha 1,3-fucosyltransferase IV-expressing Chinese hamster ovary cells showed a very similar K(d) of 66 microm, suggesting that this fucosyltransferase is sufficient to produce fully functional recombinant ESL-1. Following the recent description of the affinity and kinetics of the selectin-ligand pairs L-selectin-glycosylation-dependent cell adhesion molecule-1 and P-selectin-P-selectin glycoprotein ligand-1, this is the first determination of the parameters of E-selectin binding to one of its naturally occurring ligands.

Original publication

DOI

10.1074/jbc.M104844200

Type

Journal article

Journal

J Biol Chem

Publication Date

24/08/2001

Volume

276

Pages

31602 - 31612

Keywords

Animals, Base Sequence, CHO Cells, Cricetinae, DNA Primers, E-Selectin, Kinetics, Membrane Glycoproteins, Protein Binding, Receptors, Fibroblast Growth Factor, Recombinant Proteins, Sialoglycoproteins, Surface Plasmon Resonance, Thermodynamics