Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Conventional analysis of electroencephalography (EEG) and magnetoencephalography (MEG) often relies on averaging over multiple trials to extract statistically relevant differences between two or more experimental conditions. In this article we demonstrate single-trial detection by linearly integrating information over multiple spatially distributed sensors within a predefined time window. We report an average, single-trial discrimination performance of Az approximately 0.80 and faction correct between 0.70 and 0.80, across three distinct encephalographic data sets. We restrict our approach to linear integration, as it allows the computation of a spatial distribution of the discriminating component activity. In the present set of experiments the resulting component activity distributions are shown to correspond to the functional neuroanatomy consistent with the task (e.g., contralateral sensorymotor cortex and anterior cingulate). Our work demonstrates how a purely data-driven method for learning an optimal spatial weighting of encephalographic activity can be validated against the functional neuroanatomy.

Type

Journal article

Journal

Neuroimage

Publication Date

09/2002

Volume

17

Pages

223 - 230

Keywords

Algorithms, Artificial Intelligence, Data Interpretation, Statistical, Electroencephalography, Functional Laterality, Humans, Imagination, Linear Models, Magnetoencephalography, Models, Neurological, Motor Activity, Movement, Psychomotor Performance