Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tunicates are the unique chordates to possess species reproducing sexually and asexually. Among them, the colonial ascidian Botryllus schlosseri is a reference model for the study of similarities and differences in these two developmental pathways. We here illustrate the characterization and expression pattern during both pathways of a transcript for a gene orthologous to Dazap1. Dazap1 genes encode for RNA-binding proteins and fall into the Musashi-like (Msi-like) group. Our phylogenetic analysis shows that these are related to other RNA-binding proteins (Tardbp and several heterogeneous nuclear ribonucleoproteins types) that share the same modular domain structure of conserved tandem RNA Recognition Motifs (RRMs). We also classify the whole group as derived from a single ancient duplication of the RRM. Our results also show that Dazap1 is expressed with discrete spatiotemporal pattern during embryogenesis and blastogenesis of B. schlosseri. It is never expressed in wholly differentiated tissues, but it is located in all bud tissues and in different spatiotemporally defined territories of embryos and larva. These expression patterns could indicate different roles in the two processes, but an intriguing relationship appears if aspects of cell division dynamics are taken into account, suggesting that it is related to the proliferative phases in all tissues, and raising a similarity with known Dazap1 orthologs in other metazoans.

Original publication

DOI

10.1002/jez.b.21431

Type

Journal article

Journal

J Exp Zool B Mol Dev Evol

Publication Date

15/12/2011

Volume

316

Pages

562 - 573

Keywords

Animals, Bayes Theorem, Embryonic Development, Gene Expression Regulation, Gene Expression Regulation, Developmental, In Situ Hybridization, Life Cycle Stages, Phylogeny, RNA-Binding Proteins, Synteny, Urochordata