Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We use the budding yeast, Saccharomyces cerevisiae, to investigate one model for the initial emergence of multicellularity: the formation of multicellular aggregates as a result of incomplete cell separation. We combine simulations with experiments to show how the use of secreted public goods favors the formation of multicellular aggregates. Yeast cells can cooperate by secreting invertase, an enzyme that digests sucrose into monosaccharides, and many wild isolates are multicellular because cell walls remain attached to each other after the cells divide. We manipulate invertase secretion and cell attachment, and show that multicellular clumps have two advantages over single cells: they grow under conditions where single cells cannot and they compete better against cheaters, cells that do not make invertase. We propose that the prior use of public goods led to selection for the incomplete cell separation that first produced multicellularity.

Original publication

DOI

10.1371/journal.pbio.1001122

Type

Journal article

Journal

PLoS Biol

Publication Date

08/2011

Volume

9

Keywords

Cell Adhesion, Cell Division, Glucose, Models, Biological, Saccharomycetales, Sucrose, beta-Fructofuranosidase