Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

It has recently been proposed that mosquito vectors of human diseases, particularly malaria, may be controlled by spraying with fungal biopesticides that increase the rate of adult mortality. Though fungal pathogens do not cause instantaneous mortality, they can kill mosquitoes before they are old enough to transmit disease. A model is developed (i) to explore the potential for fungal entomopathogens to reduce significantly infectious mosquito populations, (ii) to assess the relative value of the many different fungal strains that might be used, and (iii) to help guide the tactical design of vector-control programmes. The model follows the dynamics of different classes of adult mosquitoes with the risk of mortality due to the fungus being assumed to be a function of time since infection (modelled using the Weibull distribution). It is shown that substantial reductions in mosquito numbers are feasible for realistic assumptions about mosquito, fungus and malaria biology and moderate to low daily fungal infection probability. The choice of optimal fungal strain and spraying regime is shown to depend on local mosquito and malaria biology. Fungal pathogens may also influence the ability of mosquitoes to transmit malaria and such effects are shown to further reduce vectorial capacity.

Original publication

DOI

10.1098/rspb.2008.0689

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/01/2009

Volume

276

Pages

71 - 80

Keywords

Animals, Culicidae, Feeding Behavior, Fungi, Models, Theoretical, Mosquito Control, Plasmodium, Time Factors