Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mating rate is a major determinant of female lifespan and fitness, and is predicted to optimize at an intermediate level, beyond which superfluous matings are costly. In female Drosophila melanogaster, nutrition is a key regulator of mating rate but the underlying mechanism is unknown. The evolutionarily conserved insulin/insulin-like growth factor-like signalling (IIS) pathway is responsive to nutrition, and regulates development, metabolism, stress resistance, fecundity and lifespan. Here we show that inhibition of IIS, by ablation of Drosophila insulin-like peptide (DILP)-producing median neurosecretory cells, knockout of dilp2, dilp3 or dilp5 genes, expression of a dominant-negative DILP-receptor (InR) transgene or knockout of Lnk, results in reduced female remating rates. IIS-mediated regulation of female remating can occur independent of virgin receptivity, developmental defects, reduced body size or fecundity, and the receipt of the female receptivity-inhibiting male sex peptide. Our results provide a likely mechanism by which females match remating rates to the perceived nutritional environment. The findings suggest that longevity-mediating genes could often have pleiotropic effects on remating rate. However, overexpression of the IIS-regulated transcription factor dFOXO in the fat body-which extends lifespan-does not affect remating rate. Thus, long life and reduced remating are not obligatorily coupled.

Original publication

DOI

10.1098/rspb.2010.1390

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/02/2011

Volume

278

Pages

424 - 431

Keywords

Animals, Animals, Genetically Modified, Drosophila Proteins, Drosophila melanogaster, Female, Fertility, Insulin, Linear Models, Male, Mifepristone, Nutritional Status, Signal Transduction, Transduction, Genetic