Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

All vertebrates have directional asymmetries in the organization of their internal organs. In jawed vertebrates, development of asymmetry is controlled by a conserved molecular pathway that includes Pitx2, which is expressed by lateral plate mesoderm cells on the left side of the embryo. Pitx2 is a member of the Pitx homeobox gene family, the expression of which also marks stomodeal ectoderm and the adenohypophysis. Here we report the characterization of Pitx genes from Branchiostoma floridae (an amphioxus) and Ciona intestinalis (a urochordate), representatives of two basal chordate lineages and successively deeper outgroups to the vertebrates. Expression of B. floridae Pitx is similar to that reported from B. belcheri, a different amphioxus species. Expression of the Ciona Pitx ortholog in the embryonic primordial pharynx and adult neural complex leads us to propose the Ciona primordial pharynx and ciliated funnel are homologous to the adenohypophyseal placode and adenohypophysis, respectively. Additionally, in both species we identify asymmetrical left-sided expression of Pitx genes during embryonic development. This shows that asymmetrical Pitx gene expression, and by inference directional asymmetry, evolved before the radiation of living chordates and should be considered a chordate character.

Type

Journal article

Journal

Evol Dev

Publication Date

09/2002

Volume

4

Pages

354 - 365

Keywords

Amino Acid Sequence, Animals, Base Sequence, Chordata, Nonvertebrate, Ciona intestinalis, Cloning, Molecular, DNA Primers, Evolution, Molecular, Genes, Homeobox, Homeodomain Proteins, In Situ Hybridization, Molecular Sequence Data, Nuclear Proteins, Phylogeny, Pituitary Gland, Anterior, Sequence Homology, Amino Acid, Transcription Factors