Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Natural selection operates both directly, via the impact of a trait upon the individual's own fitness, and indirectly, via the impact of the trait upon the fitness of the individual's genetically related social partners. These effects are often framed in terms of Hamilton's rule, rb - c > 0, which provides the central result of social-evolution theory. However, a number of studies have questioned the generality of Hamilton's rule, suggesting that it requires restrictive assumptions. Here, we use Fisher's genetical paradigm to demonstrate the generality of Hamilton's rule and to clarify links between different studies. We show that confusion has arisen owing to researchers misidentifying model parameters with the b and c terms in Hamilton's rule, and misidentifying measures of genotypic similarity or genealogical relationship with the coefficient of genetic relatedness, r. More generally, we emphasize the need to distinguish between general kin-selection theory that forms the foundations of social evolution, and streamlined kin-selection methodology that is used to solve specific problems.

Original publication

DOI

10.1111/j.1420-9101.2011.02236.x

Type

Journal article

Journal

J Evol Biol

Publication Date

05/2011

Volume

24

Pages

1020 - 1043

Keywords

Altruism, Animals, Family, Least-Squares Analysis, Models, Genetic, Selection, Genetic