Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Sex allocation theory predicts that parents should bias their reproductive investments toward the offspring sex generating the greatest fitness return. When females are the heterogametic sex (e.g., ZW in butterflies, some lizards, and birds), production of daughters is associated with an increased risk of offspring inviability due to the expression of paternal, detrimental recessives on the Z chromosome. Thus, daughters should primarily be produced when mating with partners of high genetic quality. When female sand lizards (Lacerta agilis) mate with genetically superior males, exhibiting high MHC Class I polymorphism, offspring sex ratios are biased towards daughters, possibly due to recruitment of more Z-carrying oocytes when females have assessed the genetic quality of their partners. If our study has general applicability across taxa, it predicts taxon-specific sex allocation effects depending on which sex is the heterogametic one.

Type

Journal article

Journal

Evolution

Publication Date

01/2005

Volume

59

Pages

221 - 225

Keywords

Animals, Female, Genes, MHC Class I, Heterozygote, Lizards, Male, Microsatellite Repeats, Polymorphism, Genetic, Reproduction, Selection, Genetic, Sex Ratio, Sweden