Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RNA viruses have an extremely high mutation rate, and we argue that the most plausible explanation for this is a trade-off with replication speed. We suggest that research into further increasing this mutation rate artificially as an antiviral treatment requires a theoretical reevaluation, especially relating to the so-called error threshold. The main evolutionary consequence of a high mutation rate appears to have been to restrict RNA viruses to a small genome; they thus rapidly exploit a limited array of possibilities. Investigating this constraint to their evolution, and how it is occasionally overcome, promises to be fruitful. We explain the many terms used in investigating RNA viral evolution and highlight the specific experimental and comparative work that needs to be done.

Original publication




Journal article


Trends Ecol Evol

Publication Date





188 - 193


DNA Viruses, Evolution, Molecular, Genome, Viral, Mutation, RNA Viruses, Virus Replication