Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Postcopulatory sexual selection can select for sperm allocation strategies in males [1, 2], but males should also strategically allocate nonsperm components of the ejaculate [3, 4], such as seminal fluid proteins (Sfps). Sfps can influence the extent of postcopulatory sexual selection [5-7], but little is known of the causes or consequences of quantitative variation in Sfp production and transfer. Using Drosophila melanogaster, we demonstrate that Sfps are strategically allocated to females in response to the potential level of sperm competition. We also show that males who can produce and transfer larger quantities of specific Sfps have a significant competitive advantage. When males were exposed to a competitor male, matings were longer and more of two key Sfps, sex peptide [8] and ovulin [9], were transferred, indicating strategic allocation of Sfps. Males selected for large accessory glands (a major site of Sfp synthesis) produced and transferred significantly more sex peptide, but not more ovulin. Males with large accessory glands also had significantly increased competitive reproductive success. Our results show that quantitative variation in specific Sfps is likely to play an important role in postcopulatory sexual selection and that investment in Sfp production is essential for male fitness in a competitive environment.

Original publication




Journal article


Curr Biol

Publication Date





751 - 757


Animals, Drosophila Proteins, Drosophila melanogaster, Enzyme-Linked Immunosorbent Assay, Fertility, Male, Peptides, Selection, Genetic, Seminal Plasma Proteins, Sexual Behavior, Animal