Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (ΔE°' = -328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined oxidation of sulfide and sulfite to thiosulfate in a reverse of the physiological reaction. In contrast to the forward reaction the exergonic thiosulfate-forming reaction was PMF independent. Electron transfer from formate to thiosulfate in whole cells occurs predominantly by intraspecies hydrogen transfer.

Original publication

DOI

10.1128/JB.06014-11

Type

Journal article

Journal

J Bacteriol

Publication Date

01/2012

Volume

194

Pages

475 - 485

Keywords

Escherichia coli, Gene Expression Regulation, Bacterial, Gene Expression Regulation, Enzymologic, Naphthols, Oxidation-Reduction, Proton-Motive Force, Protons, Salmonella enterica, Sulfurtransferases, Terpenes, Thermodynamics, Thiosulfates