Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Homeobox genes encode a large superclass of transcription factors with widespread roles in animal development. Within chordates there are over 100 homeobox genes in the invertebrate cephalochordate amphioxus and over 200 in humans. Set against this general trend of increasing gene number in vertebrate evolution, some ancient homeobox genes that were present in the last common ancestor of chordates have been lost from vertebrates. Here, we describe the embryonic expression of four amphioxus descendants of these genes--AmphiNedxa, AmphiNedxb, AmphiMsxlx and AmphiNKx7. All four genes are expressed with a striking asymmetry about the left-right axis in the pharyngeal region of neurula embryos, mirroring the pronounced asymmetry of amphioxus embryogenesis. AmphiMsxlx and AmphiNKx7 are also transiently expressed in an anterior neural tube region destined to become the cerebral vesicle. These findings suggest significant rewiring of developmental gene regulatory networks occurred during chordate evolution, coincident with homeobox gene loss. We propose that loss of otherwise widely conserved genes is possible when these genes function in a confined role in development that is subsequently lost or significantly modified during evolution. In the case of these homeobox genes, we propose that this has occurred in relation to the evolution of the chordate pharynx and brain.

Original publication

DOI

10.1098/rspb.2010.0647

Type

Journal article

Journal

Proc Biol Sci

Publication Date

22/11/2010

Volume

277

Pages

3381 - 3389

Keywords

Amino Acid Sequence, Animals, Biological Evolution, Body Patterning, Chordata, Nonvertebrate, Gene Expression Regulation, Developmental, Genes, Homeobox, Molecular Sequence Data