Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To understand a visual scene, observers need to both recognize objects and encode relational structure. For example, a scene comprising three apples requires the observer to encode concepts of "apple" and "three." In the primate brain, these functions rely on dual (ventral and dorsal) processing streams. Object recognition in primates has been successfully modeled with deep neural networks, but how scene structure (including numerosity) is encoded remains poorly understood. Here, we built a deep learning model, based on the dual-stream architecture of the primate brain, which is able to count items "zero-shot"-even if the objects themselves are unfamiliar. Our dual-stream network forms spatial response fields and lognormal number codes that resemble those observed in the macaque posterior parietal cortex. The dual-stream network also makes successful predictions about human counting behavior. Our results provide evidence for an enactive theory of the role of the posterior parietal cortex in visual scene understanding.

Original publication

DOI

10.1016/j.neuron.2024.10.008

Type

Journal article

Journal

Neuron

Publication Date

29/10/2024

Keywords

PPC, attention, dorsal stream, enactive cognition, enumeration, neural networks, numerical cognition, structure learning, visual reasoning, zero-shot generalization