Ray bioturbation rates suggest they shape estuary processes
Grew M., Gaston TF., Griffin AS., Duce SJ., Raoult V.
Bioturbation of sediments is a key ecosystem service in estuarine and marine ecosystems, and rays (superorder Batoidea: skates, stingrays, electric rays and shovelnose rays) are among the largest bioturbators, modifying their habitat through foraging and predation. Ray activities cycle nutrients, increase oxygen penetration and re-stratify sediments. However, given rays are globally threatened, it is unclear to what extent the loss of rays, and the ecosystem services they provide, would affect ecosystem processes. This study assessed the likely amount of sediment displaced annually by rays during foraging activities at an estuary scale. To achieve this, an aerial drone was used to map daily ray bioturbation activity, as evident from the presence of feeding pits. High-resolution, 2.6 cm px−1, Digital Elevation Models (DEM) were created and used to measure the volume of sediment displaced by feeding pits. We found rays within the Brisbane Water estuary in NSW, Australia excavated 1.20 (±0.68) tonnes of sediment per day within this 1443 m2 intertidal area, or a rate of 575.2 cm3 m−2 per day. This bioturbation rate is relatively high compared to bioturbation rates documented in other ray species. Spatial autocorrelation analysis indicated that the ray feeding pits were significantly clustered by location as well as size (P < 0.01), suggesting size segregation of ray foraging. When bioturbation rates were conservatively extrapolated across measured feeding area in the estuary, we calculated rays displace 57.6 (±32.4) tonnes of sediment per day, or 21.0 (±11.4) kilotonnes per year. This underlines how ray bioturbation likely shape estuary processes, and how the loss of rays and their ecosystem services would likely have considerable impacts on estuarine sedimentary ecosystems. These findings emphasize the ecological importance of rays in an ecosystem and a need to better understand the consequences of anthropogenic pressures to these services.