Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The importance of genetic influences on cognitive disability has been recognized for a long time, but molecular analysis has only recently begun to yield insights into the pathogenesis of this common and disabling condition. The availability of genome sequences has enabled the characterization of the chromosomal deletions and trisomies that result in cognitive disability, and mutations in rare single-gene conditions are being discovered. The molecular pathology of cognitive disability is turning out to be as heterogeneous as the condition itself, with unexpected complexities even in apparently simple gene-deletion syndromes. One remarkable finding from studies on X-linked mental retardation is that mutations in different small guanosine triphosphate (GTP)-binding proteins result in cognitive disability without other somatic features. Advances are also being made in cognitive disability with polygenic origins, such as dyslexia and autism. However, the genetic basis of mild intellectual disability has yet to be satisfactorily explained.


Journal article


Dialogues Clin Neurosci

Publication Date





37 - 46


X-linked mental retardation, aneuploidy, chromosomal disorder, cognition, intellectual disability, mental retardation