Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Multiple mitotic kinesins and microtubule-associated proteins (MAPs) act in concert to direct cytokinesis (Glotzer, M. 2005. Science. 307:1735-1739). In anaphase cells, many of these proteins associate with an antiparallel array of microtubules termed the central spindle. The MAP and microtubule-bundling protein PRC1 (protein-regulating cytokinesis 1) is one of the key molecules required for the integrity of this structure (Jiang, W., G. Jimenez, N.J. Wells, T.J. Hope, G.M. Wahl, T. Hunter, and R. Fukunaga. 1998. Mol. Cell. 2:877-885; Mollinari, C., J.P. Kleman, W. Jiang, G. Schoehn, T. Hunter, and R.L. Margolis. 2002. J. Cell Biol. 157:1175-1186). In this study, we identify an interaction between endogenous PRC1 and the previously uncharacterized kinesin KIF14 as well as other mitotic kinesins (MKlp1/CHO1, MKlp2, and KIF4) with known functions in cytokinesis (Hill, E., M. Clarke, and F.A. Barr. 2000. EMBO J. 19:5711-5719; Matuliene, J., and R. Kuriyama. 2002. Mol. Biol. Cell. 13:1832-1845; Kurasawa, Y., W.C. Earnshaw, Y. Mochizuki, N. Dohmae, and K. Todokoro. 2004. EMBO J. 23:3237-3248). We find that KIF14 targets to the central spindle via its interaction with PRC1 and has an essential function in cytokinesis. In KIF14-depleted cells, citron kinase but not other components of the central spindle and cleavage furrow fail to localize. Furthermore, the localization of KIF14 and citron kinase to the central spindle and midbody is codependent, and they form a complex depending on the activation state of citron kinase. Contrary to a previous study (Di Cunto, F., S. Imarisio, E. Hirsch, V. Broccoli, A. Bulfone, A. Migheli, C. Atzori, E. Turco, R. Triolo, G.P. Dotto, et al. 2000. Neuron. 28:115-127), we find a general requirement for citron kinase in human cell division. Together, these findings identify a novel pathway required for efficient cytokinesis.

Original publication

DOI

10.1083/jcb.200511061

Type

Journal article

Journal

J Cell Biol

Publication Date

30/01/2006

Volume

172

Pages

363 - 372

Keywords

Binding Sites, Cell Cycle Proteins, Cell Line, Tumor, Cytokinesis, Cytoplasm, HeLa Cells, Humans, Intracellular Signaling Peptides and Proteins, Kinesin, Microtubule-Associated Proteins, Models, Genetic, Oncogene Proteins, Protein Binding, Protein-Serine-Threonine Kinases, RNA, Small Interfering, Spindle Apparatus, Transfection