Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

GM1 gangliosidosis is a glycosphingolipid (GSL) lysosomal storage disease caused by a genetic deficiency of acid beta-galactosidase (beta-gal), the enzyme that catabolyzes GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs primarily in the brain, leading to progressive neurodegeneration and brain dysfunction. Substrate reduction therapy aims to decrease the rate of GSL biosynthesis to counterbalance the impaired rate of catabolism. The imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ) is a competitive inhibitor of the ceramide-specific glucosyltransferase that catalyzes the first step in GSL biosynthesis. Neonatal C57BL/6J (B6) and beta-gal knockout (-/-) mice were injected daily from post-natal day 2 (p-2) to p-5 with either vehicle or NB-DGJ at 600 mg or 1200 mg/kg body weight. These drug concentrations significantly reduced total brain ganglioside and GM1 content in the B6 and the beta-gal (-/-) mice. Drug treatment had no significant effect on viability, body weight, brain weight, or brain water content in the B6 and beta-gal (-/-) mice. Significant elevations in neutral lipids (GA1, ceramide, and sphingomyelin) were observed in the NB-DGJ-treated beta-gal (-/-) mice, but were not associated with adverse effects. Also, NB-DGJ treatment of B6 and beta-gal (-/-) mice from p-2 to p-5 had no subsequent effect on brain ganglioside content at p-21. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM1 content at early neonatal ages. These findings suggest that substrate reduction therapy using NB-DGJ may be an effective early intervention for GM1 gangliosidosis and possibly other GSL lysosomal storage diseases.

Original publication




Journal article


J Neurochem

Publication Date





645 - 653


1-Deoxynojirimycin, Animals, Animals, Newborn, Body Weight, Brain, Brain Chemistry, Chromatography, Thin Layer, Disease Models, Animal, Fetal Viability, Gangliosides, Gangliosidosis, GM1, Lipid Metabolism, Lipids, Mice, Mice, Inbred C57BL, Mice, Knockout, Treatment Outcome