Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two-pore domain (K2P) potassium channels are important regulators of cellular electrical excitability. However, the structure of these channels and their gating mechanism, in particular the role of the bundle-crossing gate, are not well understood. Here, we report that quaternary ammonium (QA) ions bind with high-affinity deep within the pore of TREK-1 and have free access to their binding site before channel activation by intracellular pH or pressure. This demonstrates that, unlike most other K + channels, the bundle-crossing gate in this K2P channel is constitutively open. Furthermore, we used QA ions to probe the pore structure of TREK-1 by systematic scanning mutagenesis and comparison of these results with different possible structural models. This revealed that the TREK-1 pore most closely resembles the open-state structure of KvAP. We also found that mutations close to the selectivity filter and the nature of the permeant ion profoundly influence TREK-1 channel gating. These results demonstrate that the primary activation mechanisms in TREK-1 reside close to, or within the selectivity filter and do not involve gating at the cytoplasmic bundle crossing. © 2011 European Molecular Biology Organization | All Rights Reserved.

Original publication




Journal article


EMBO Journal

Publication Date





3607 - 3619