Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

CD200 (OX2) is a membrane glycoprotein that interacts with a structurally related receptor (CD200R) involved in the regulation of macrophage function. The interaction is of low affinity (KD ∼ 1 μm) but can be detected using CD200 displayed in a multivalent form on beads or with dimeric fusion proteins consisting of the extracellular region of CD200 and immunoglobulin Fc regions. We prepared putative pentamers and trimers of mouse CD200 with sequences from cartilage oligomeric matrix protein (COMP) and surfactant protein D (SP-D), respectively. The COMP protein gave high-avidity binding and was a valuable tool for showing the interaction whilst the SP-D protein gave weak binding. In vivo experiments showed that an agonistic CD200R monoclonal antibody caused some amelioration in a model of experimental autoimmune encephalomyelitis but the COMP protein was cleared rapidly and had minimal effect. Pentameric constructs also allowed detection of the rat CD48/CD2 interaction, which is of much lower affinity (KD ∼ 70 μm). These reagents may have an advantage over Fc-bearing hybrid molecules for probing cell surface proteins without side-effects due to the Fc regions. The CD200-COMP gave strong signals in protein microarrays, suggesting that such reagents may be valuable in high throughput detection of weak interactions. © 2005 Blackwell Publishing Ltd.

Original publication

DOI

10.1111/j.1365-2567.2005.02161.x

Type

Journal article

Journal

Immunology

Publication Date

01/07/2005

Volume

115

Pages

337 - 346