Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Resolving the genetic basis of complex diseases like rheumatoid arthritis will require knowledge of the corresponding diseases in experimental animals to enable translational functional studies. Mapping of quantitative trait loci in mouse models of arthritis, such as collagen-induced arthritis (CIA), using F(2) crosses has been successful, but can resolve loci only to large chromosomal regions. Using an inbred-outbred cross design, we identified and fine-mapped CIA loci on a genome-wide scale. Heterogeneous stock mice were first intercrossed with an inbred strain, B10.Q, to introduce an arthritis permitting MHCII haplotype. Homozygous H2(q) mice were then selected to set up an F(3) generation with fixed major histocompatibility complex that was used for arthritis experiments. We identified 26 loci, 18 of which are novel, controlling arthritis traits such as incidence of disease, severity and time of onset and fine-mapped a number of previously mapped loci.

Original publication

DOI

10.1093/hmg/ddr206

Type

Journal article

Journal

Hum Mol Genet

Publication Date

01/08/2011

Volume

20

Pages

3031 - 3041

Keywords

Animals, Arthritis, Experimental, Arthritis, Rheumatoid, Crosses, Genetic, Disease Models, Animal, Female, Genotype, Haplotypes, Major Histocompatibility Complex, Male, Mice, Quantitative Trait Loci