Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Three alpha-tubulins and two beta-tubulins have been resolved by two-dimensional gel electrophoresis of whole cell lysates of Physarum myxamoebae or plasmodia. Criteria used to identify the tubulins included migration on two-dimensional gels with myxamoebal tubulins purified by self-assembly into microtubules in vitro, peptide mapping with Staphylococcus V8 protease and with chymotrypsin, immunoprecipitation with a monoclonal antibody specific for beta-tubulin, and, finally, hybrid selection of specific mRNA by cloned tubulin DNA sequences, followed by translation in vitro. Differential expression of the Physarum tubulins was observed. The alpha 1- and beta 1-tubulins were detected in both myxamoebae and plasmodia; alpha 2 and beta 2 were detected only in plasmodia, alpha 3 was detected only in the myxamoebal phase, and may be specific to the flagellate. Observation of more tubulin species in plasmodia than in myxamoebae was remarkable; the only microtubules detected in plasmodia are those of the mitotoic spindle, whereas myxamoebae display cytoplasmic, centriolar, flagellar, and mitotic-spindle microtubules. In vitro translation of myxamoebal and plasmodial RNAs indicated that there are distinct mRNAs, and therefore probably separate genes, for the alpha 1-, alpha 2-, beta 1-, and beta 2-tubulins. Thus, the different patterns of tubulin expression in myxamoebae and plasmodia reflect differential expression of tubulin genes.

Type

Journal article

Journal

J Cell Biol

Publication Date

12/1983

Volume

97

Pages

1852 - 1859

Keywords

Electrophoresis, Polyacrylamide Gel, Kinetics, Peptide Fragments, Physarum, Protein Biosynthesis, RNA, Transcription, Genetic, Tubulin