Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The influenza virus RNA polymerase transcribes the negative-sense viral RNA segments (vRNA) into mRNA and replicates them via complementary RNA (cRNA) intermediates into more copies of vRNA. It is not clear how the relative amounts of the three RNA products, mRNA, cRNA and vRNA, are regulated during the viral life cycle. We found that in viral ribonucleoprotein (vRNP) reconstitution assays involving only the minimal components required for viral transcription and replication (the RNA polymerase, the nucleoprotein and a vRNA template), the relative levels of accumulation of RNA products differed from those observed in infected cells, suggesting a regulatory role for additional viral proteins. Expression of the viral NS2/NEP protein in RNP reconstitution assays affected viral RNA levels by reducing the accumulation of transcription products and increasing the accumulation of replication products to more closely resemble those found during viral infection. This effect was functionally conserved in influenza A and B viruses and was influenza-virus-type-specific, demonstrating that the NS2/NEP protein changes RNA levels by specific alteration of the viral transcription and replication machinery, rather than through an indirect effect on the host cell. Although NS2/NEP has been shown previously to play a role in the nucleocytoplasmic export of viral RNPs, deletion of the nuclear export sequence region that is required for its transport function did not affect the ability of the protein to regulate RNA levels. A role for the NS2/NEP protein in the regulation of influenza virus transcription and replication that is independent of its viral RNP export function is proposed. © 2009 SGM.

Original publication

DOI

10.1099/vir.0.009639-0

Type

Journal article

Journal

Journal of General Virology

Publication Date

03/08/2009

Volume

90

Pages

1398 - 1407