Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data, and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in different brain states that arises from asymmetric interactions and hierarchical organization.

Original publication

DOI

10.1103/PhysRevE.108.064410

Type

Journal article

Journal

Physical Review E

Publication Date

01/12/2023

Volume

108