Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The mechanisms of deep brain stimulation (DBS) are poorly understood. Earlier, high-frequency DBS has been thought to represent a depolarization block of the target area and low-frequency stimulation has been thought to 'drive' neuronal activity. We investigated the long-term effect of low-frequency DBS in a longitudinal imaging study of a patient who received bilateral pedunculopontine nucleus stimulation. We used the diffusion tensor imaging techniques including probabilistic tractography and topographic mapping to analyze long-term changes in connectivity with low-frequency DBS. Post-DBS connectivity analysis suggested a normalization of pathological pedunculopontine nucleus connectivity with DBS therapy. These findings may help elucidate the mechanisms of DBS, suggesting neuroplasticity involving a reorganization of target connectivity long term. This is the first reported case showing neuroimaging evidence of neuroplasticity after low-frequency DBS.

Original publication




Journal article



Publication Date





1065 - 1068


Deep Brain Stimulation, Humans, Male, Middle Aged, Neural Pathways, Neuronal Plasticity, Parkinson Disease, Pedunculopontine Tegmental Nucleus, Recovery of Function, Time Factors